Search results for "Relativistic wave equations"
showing 3 items of 3 documents
Quantum and Classical Statistical Mechanics of the Non-Linear Schrödinger, Sinh-Gordon and Sine-Gordon Equations
1985
We are going to describe our work on the quantum and classical statistical mechanics of some exactly integrable non-linear one dimensional systems. The simplest is the non-linear Schrodinger equation (NLS) $$i{\psi _t} = - {\psi _{XX}} + 2c{\psi ^ + }\psi \psi $$ (1) where c, the coupling constant, is positive. The others are the sine- and sinh-Gordon equations (sG and shG) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi $$ (1.2) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sinh \phi $$ (1.3)
Exactly solvable relativistic model with the anomalous interaction
2010
A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron'ko-Stroganov model.
Relativistic wave equations from supergroup quantization
1983
A formalism of geometric quantization recently introduced which is based on the consideration of Lie groups which are central extensions by U(1) is applied to the relativistic case by using the N-2 super Poincare group with a central charge.